HomeMATHSMATHS M3(18MAT31){Mod1-mod5 HANDWRITTEN GOOD notes}MATHS-M3(18MAT31)-Transform Calculus, Fourier Series and Numerical Techniques(18MAT31)

{Mod1-mod5 HANDWRITTEN GOOD notes}MATHS-M3(18MAT31)-Transform Calculus, Fourier Series and Numerical Techniques(18MAT31)

18MAT31 M3 IMPORTANT QUESTIONS ALL MODS : click here

 

QUESTION BANK 18MAT31 M3CLICK HERE TO DOWNLOAD
(very useful)
 
SAMPLE QUESTION PAPERS 18MAT31 m3click here 

Transform Calculus, Fourier Series and Numerical Techniques(18MAT31)-HANDWRITTEN NOTES

 

 
 
 
 
 
 

 
 
 
 
 

 

 

 

 

SYLLABUS
 
MODULE-1
1. Laplace Transform: Definition and Laplace transforms of elementary functions (statements only). 
Laplace transforms of Periodic functions (statement only) and unit-step function – problems Discussion restricted to the problems as suggested in Article No.21.1 to 21.5, 21.7,21.9, 21.10 & 21.17 of Text Book 2. 3L
 2. Inverse Laplace Transform: Definition & problems, Convolution theorem to find the inverse Laplace Transforms(without Proof) and Problems Discussion restricted to problems as suggested in Article No.21.12 & 21.14 of Text Book 2. 3L
 3. Solution of linear differential equations using Laplace Transforms. Application of Laplace transforms to solve ODE’s restricted to Article No. 21.15 of Text Book 2
 
 
MODULE-2
 
1.Fourier Series: Periodic functions, Dirichlet’s condition. Fourier series of periodic functions period and arbitrary period.
2. Half range Fourier series.
3. Practical harmonic analysis
 
 
 
MODULE-3
 
 
1.Fourier Transforms: Infinite Fourier transforms, Fourier sine and cosine transforms. Inverse Fourier transforms. Problems. 
 
 
2. Difference equations and Z-transforms: Difference equations, basic definition, ztransform-definition, standard z-transforms, damping and shifting rules, initial value and final value theorems (without proof) and problems.
 
3. Inverse z-transform-problems and applications to solve difference equations. ( RBT Levels: L1 & L2) 
 
 
MODULE-4
 
1. Numerical Solutions of Ordinary Differential Equations (ODE’s): Numerical solution of ODE’s of first order and first degree- Taylor’s series method
 
2. Modified Euler’s method & Runge – Kutta method of fourth order. 
 
3.Milne’s and Adam-Bashforth predictor and corrector method (No derivations of formulae)-Problems
 
 
 
MODULE-5
1. Numerical Solution of second order ODE’s:- Runge-Kutta method of order IV and Milne’s predictor and corrector method.(No derivations of formulae). Discussion and problems as suggested in Article No.32.12 of Text Book 2. 3L 
 
2. Calculus of Variations: Variation of function and functional, variational problems, Euler’s equation. 
 
3. Geodesics, hanging chain, problems 
 
 
 
 
Text books:
 1. E. Kreyszig: Advanced Engineering Mathematics, John Wiley & Sons, 10th Ed.(Reprint), 2017. 
2. B.S. Grewal: Higher Engineering Mathematics, Khanna Publishers, 44th Ed., 2017. 
 
3. Srimanta Pal & Subobh C Bhunia: “Engineering Mathematics”, Oxford University Press, 3rd Reprint, 2016. 
 
 
Reference Books: 
 
1. C.Ray Wylie, Louis C.Barrett : “Advanced Engineering Mathematics”, 6th Edition, 2. McGrawHill Book Co., New York, 1995. 
2. S.S.Sastry: “Introductory Methods of Numerical Analysis”, 11th Edition, Tata McGraw-Hill, 2010 
3. B.V.Ramana: “Higher Engineering Mathematics” 11th Edition, Tata McGraw-Hill, 2010.
 4. N.P.Bali and Manish Goyal, “A Text Book of Engineering Mathematics”, Laxmi Publications. Latest edition, 2014.
 5. Chandrika Prasad and Reena Garg “Advanced Engineering Mathematics”, Latest edition, Khanna Publishing, 2018.  
 
 
 
 

 

RELATED ARTICLES

LEAVE A REPLY

Please enter your comment!
Please enter your name here

Most Popular

Recent Comments